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Abstract

X-ray emission following charge exchange has been studied at the University of California Lawrence Livermore
National Laboratory electron beam ion traps EBIT-I and EBIT-II using a high-resolution microcalorimeter. The mea-
sured spectra include the K-shell emission from hydrogenlike and heliumlike C, N, O, and Ne needed for simulations of
cometary x-ray emission. A comparison of the spectra produced in the interaction of O®* with N, and CH, is presented

that illustrates the dependence of the observed spectrum on the interaction gas.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

X-ray production by charge exchange had re-
ceived attention when a plausible link was estab-
lished between cometary X-ray emission and
solar wind heavy ions. Fully stripped and hydro-
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glenlike carbon, nitrogen, oxygen, and neon,
which are part of the solar wind, have been
thought to interact with gases in the cometary
coma, producing K-shell X-rays via the charge ex-
change mechanism [1-5].

Recently, high-resolution techniques became
available to study the X-ray emission of highly
charged ions following charge exchange [6]. These
measurements were able to resolve most X-ray
lines, even those from levels with high principal
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quantum number n. Because the measurements
were performed on an electron beam ion trap,
these measurements also included the emission
from the 1s2s°S; level, which could not be detected
in fast-ion experiments [7,8] because of the slow
radiative rate associated with this transition. As
a result it is now possible to record complete
charge exchange induced X-ray spectra in the lab-
oratory and to use them to simulate the observed
emission from comets.

These new capabilities made it possible to show
that cometary X-ray emission can be completely
described by charge exchange induced X-ray emis-
sion [6]. Alternative X-ray production mecha-
nisms, which ranged from lower-hybrid wave
heating, scattering of solar X-rays by nano-sized
dust grains to electron fluorescence and conversion
of the kinetic energy of dust particles to X-rays [9-
13], were shown to be not needed to simulate the
observed cometary X-ray spectra.

In the following we present measurements of
the spectra produced by O%" interacting with N,
and CH, as well as by Ne'%* interacting with neu-
tral neon recorded at our facility with a high-reso-
lution X-ray microcalorimeter array.

2. Experiment

Our measurements are carried out at the elec-
tron beam ion trap facility at the University of
California Lawrence Livermore National Labora-
tory (UC-LLNL). This facility has been used for
almost a decade for studying the X-ray emission
of highly charged ions following charge exchange
[14]. The early measurements involved ions with
charge as high as U*'* [15-18].

The charge exchange measurements were made
possible by utilizing the so-called magnetic trap-
ping mode of the electron beam ion trap
[14,19,20]. In this mode, the electron beam is
turned off after the ions have been produced.
The ions are confined in the radial direction by
the longitudinal field of two superconducting mag-
nets in the Helmholtz configuration, and in the
axial direction by a potential on the upper and
lower drift tubes. The interaction gas is selected
by puffing the desired neutral gas into the trap.

More recently we used the UC-LLNL facility to
study the emission of highly charged ions found in
the solar wind. In a study of the K-shell emission
of O™ and Ne’* we showed that the shape of
the K-shell emission spectrum depended on the
ion—neutral collision energy below about a few
keV/amu [21]. These measurements were made
with a windowless high-purity Ge detector and
thus could not resolve the individual X-ray
transitions.

In order to perform high-resolution spectral
measurements of the X-ray emission, we imple-
mented in 2000 a microcalorimeter array detector
on our facility [22]. The X-ray microcalorimeter
spectrometer (XRS) was originally developed for
the Astro-E mission [23]. It consists of a 32-chan-
nel, 13 mm? detector array sensitive to X-rays with
energy between 200 and 12000 eV with a resolu-
tion of 10 eV. The latter represents more than an
order of magnitude improvement over the resolu-
tion of the Ge detector used earlier. An upgrade
to the higher-resolution (6 ¢V) microcalorimeter
from the ASTRO-E2 mission was implemented
in October 2003 [24].

The improvement in resolving power is illus-
trated in Fig. 1, where we show a spectrum of
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Fig. 1. X-ray emission of Ne’* measured with high-purity Ge
detector (solid trace) and with the X-ray microcalorimeter
(dashed trace). The emission is produced in the interaction of
Ne'* jons with atomic neon. The collision energy is a few eV/
amu.
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the Ne’* K-shell emission following charge ex-
change of bare neon ions with atomic neon. For
comparison we show both the data previously ob-
tained [21] with the germanium detector and the
spectrum recorded with the XRS. The individual
X-ray transitions emanating from shells with dif-
ferent principal quantum number # are now clearly
resolved. A slight difference between the two spec-
tra beyond the difference in resolution arises in the
relative magnitude of the Rydberg lines from levels
with n > 3. This is presumably due to differences
in the collision energy, i.e. the ion temperature, be-
tween the two runs. More measurements are
needed to confirm this hypothesis.

The figure clearly illustrates the resonant nature
of charge exchange between a neutral with ioniza-
tion potential / and an ion with charge ¢, in which
the electron is preferentially transferred to a level
with principal quantum number 7. given by
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Fig. 2. K-shell emission of H-like O”" produced by charge
exchange with CHy (top) and N, (bottom). Note changes in the
ratio of Lyman-0 emanating from » =5 and Lyman-e from
n==0.

where [, is the ionization potential of hydrogen
[25]. Moreover, the strong emission from levels
with principal quantum number n > 3 is a signa-
ture of the low ion-neutral collision energy in
our trap (typically less than 20 eV/amu), as dis-
cussed in [17,21,26].

The details of the emission from high-n levels
depend on the ionization potential of the interac-
tion gas, as shown in the above equation. Energy
conservation arguments predict that electrons are
captured into higher n levels if the ionization po-
tential of the donor electron is lower. This has
been shown experimentally in [6] and is illus-
trated by the new XRS spectra in Fig. 2. The
emission from the highest-n level shifts from
n =6 in the interaction with CH,4, which has a
12.6 eV ionization potential, to n =5 in the inter-
action with N,, which has a 15.6 eV ionization
potential.

3. Conclusion

ASTRO-E2, which is scheduled to be launched
in 2005, employs a 32-channel microcalorimeter
array similar to the one we use at our facility.
The satellite is expected to return cometary X-ray
spectra with resolution equal or better than that
of the spectra we presented. The observations
made with ASTRO-E2 will further stimulate labo-
ratory measurements of charge exchange produced
X-ray emission from highly charged ions and will
provide new challenges for atomic theory to ex-
plain the observations.
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